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Developing a CYP fusion protein screening platform for terminal hydroxylation of alkanes
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IntrOd UCtiOh d nd M ethOdS Electron transfer systems (ETs) Linker design

CYP153A proteins are dependent on electrons for their catalytic function. Fusion proteins can be designed by fusing
Cytochrome (CYP) P450-Monooxygenases positional specificity. The CYP153A family is While these electrons originate from NAD(P)H, the CYP153A family CYPs with their electron transfer (ET)
SulESEIEE T ET R g LGS known for its ability to perform terminal cannot directly utilize NAD(P)H. Instead, they require dedicated ETs to systems using different linkers. This
e e S hydroxylation especially on small molecules mediate this transfer. A significant challenge in studying CYP153A approach significantly simplifies the
hydroxylation of chemically inactive carbon (GEELEEORIEB W da ulE Rk ] enzymes is identifying their native ETs partners, as the genes encoding expression and purification of proteins and,
chains. This reaction involves transferring one SR el 01| 2SS S DN these systems are often not co-localized or part of the same operon. ™ In ~ moreover, often leads to a notable increase in
Sl Ui el s the I helix within the protein core near the this study, electron transfer to CYP153A was facilitated by a ferredoxin catalytic activity due to more efficient
substrate, while the other is reduced to water.””  heme center, plays a critical role in facilitating reductase (FdR) and ferredoxin (FD) system from Acinetobacter. electron transfer between the two protein

Enzymes can perform hydroxylation with high this terminal hydroxylation." domains. Recent studies have particularly

emphasized the effectiveness of long, flexible
glycine linkers.'®
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Fig. 1: Aim: Hydroxylation of alcanes (A) to dialcohols (C). Whole-cell X\ @ Transformation reoutare
biotransformation currently produces the acetylated compounds D and E; O O _ _ _ . |
further acetylation could lead to the formation of compound F. The AO /M’\O)k Fig. 2: Whole-cell biotransformation: The activity of different
n fusion proteins was tested; the most active protein is targeted for

increased hydrophobicity of F could result in easier extraction from

aqueous solutions, enabling the subsequent production of compound C. further modification.
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Tab. 1: Overview of CYP153A Protein Constructs. Construction of eight different CYP fusion

proteins and their controls using HiFi DNA Assembly (on the right). The left panel shows the specific (RS - 04 HOLEUOSGAMM

linker combinations (4xGlycine and 2xHelix) utilized for each of the eight proteins. The control — DOASLTESDSADASITESDBOPROT

constructs consist of a fusion of the electron transfer (ET) domain without the CYP and only the CYP ERaLA TOEAOALXI TORSIMYCO
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Fig. 5: Example of a natural fusion protein. Fusion
proteins also occur naturally. This figure shows an
example: a naturally occurring CYP fusion protein from
the organism Deinococcus aetherius (AOA219DQ406).
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Conclusion
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and Outlook

We have successfully established a small
whole-cell biotransformation system that
utilizes the organism's natural NADPH
recycling function, enabling efficient and cost-
effective product formation. This optimized
reaction design enabled rapid screening of
multiple protein fusion constructs. Our initial
screening focused on FNR-FD-CYP153A fusion
proteins linked by four glycine linkers, a linker
design that had previously shown the highest
activity.
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Looking ahead, we aim to scale up the reactions
with the most active fusion constructs to
achieve sufficient product yields for extraction.
We also plan to pursue further protein

modifications specifically targeting the
Fig. 4: The substrate binding residues within the active site of CYP153A proteins. The Fe-binding substrate binding site and linker design to

cysteine (C) is highly conserved in all CYP families. A unique conserved motif (partially in “4") is further improve the efficiency and specificity of
Fig. 3: GC-MS analysis of the 4Gly-4Gly—-CYP2 construct after 24 h incubation with substrates B, A, found exclusively in the CYP135A family. Interacting residues were identified using YASARA and the protein.
and D. A slight conversion of B to D, C, and E was detected. Using A as a substrate led to the Cavitomix. The conservation of residues varies; while some are highly conserved ", others show
formation of B, whereas incubation with D resulted in the formation of E. some diversity within the CYP family tree shown. CYP152 served as an outgroup.
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